Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Med Chem ; 67(2): 1460-1480, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38214254

RESUMEN

While progress has been made in the effort to eradicate malaria, the disease remains a significant threat to global health. Acquired resistance to frontline treatments is emerging in Africa, urging a need for the development of novel antimalarial agents. Repurposing human kinase inhibitors provides a potential expedited route given the availability of a diverse array of kinase-targeting drugs that are approved or in clinical trials. Phenotypic screening of a library of type II human kinase inhibitors identified compound 1 as a lead antimalarial, which was initially developed to target human ephrin type A receptor 2 (EphA2). Here, we report a structure-activity relationship study and lead optimization of compound 1, which led to compound 33, with improved antimalarial activity and selectivity.


Asunto(s)
Antimaláricos , Malaria , Receptor EphA2 , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Relación Estructura-Actividad , África , Plasmodium falciparum
2.
N Engl J Med ; 389(8): 722-732, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37611122

RESUMEN

BACKGROUND: Partial resistance of Plasmodium falciparum to the artemisinin component of artemisinin-based combination therapies, the most important malaria drugs, emerged in Southeast Asia and now threatens East Africa. Partial resistance, which manifests as delayed clearance after therapy, is mediated principally by mutations in the kelch protein K13 (PfK13). Limited longitudinal data are available on the emergence and spread of artemisinin resistance in Africa. METHODS: We performed annual surveillance among patients who presented with uncomplicated malaria at 10 to 16 sites across Uganda from 2016 through 2022. We sequenced the gene encoding kelch 13 (pfk13) and analyzed relatedness using molecular methods. We assessed malaria metrics longitudinally in eight Ugandan districts from 2014 through 2021. RESULTS: By 2021-2022, the prevalence of parasites with validated or candidate resistance markers reached more than 20% in 11 of the 16 districts where surveillance was conducted. The PfK13 469Y and 675V mutations were seen in far northern Uganda in 2016-2017 and increased and spread thereafter, reaching a combined prevalence of 10 to 54% across much of northern Uganda, with spread to other regions. The 469F mutation reached a prevalence of 38 to 40% in one district in southwestern Uganda in 2021-2022. The 561H mutation, previously described in Rwanda, was first seen in southwestern Uganda in 2021, reaching a prevalence of 23% by 2022. The 441L mutation reached a prevalence of 12 to 23% in three districts in western Uganda in 2022. Genetic analysis indicated local emergence of mutant parasites independent of those in Southeast Asia. The emergence of resistance was observed predominantly in areas where effective malaria control had been discontinued or transmission was unstable. CONCLUSIONS: Data from Uganda showed the emergence of partial resistance to artemisinins in multiple geographic locations, with increasing prevalence and regional spread over time. (Funded by the National Institutes of Health.).


Asunto(s)
Artemisininas , Resistencia a Medicamentos , Malaria , Parásitos , Proteínas Protozoarias , Animales , Humanos , Artemisininas/farmacología , Artemisininas/uso terapéutico , Benchmarking , Parásitos/efectos de los fármacos , Parásitos/genética , Uganda/epidemiología , Resistencia a Medicamentos/genética , Malaria/tratamiento farmacológico , Malaria/genética , Malaria/parasitología , Proteínas Protozoarias/genética
3.
Microbiol Spectr ; 11(3): e0523622, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37158739

RESUMEN

Malaria, especially Plasmodium falciparum infection, remains an enormous problem, and its treatment and control are seriously challenged by drug resistance. New antimalarial drugs are needed. To characterize the Medicines for Malaria Venture pipeline of antimalarials under development, we assessed the ex vivo drug susceptibilities to 19 compounds targeting or potentially impacted by mutations in P. falciparum ABC transporter I family member 1, acetyl-CoA synthetase, cytochrome b, dihydroorotate dehydrogenase, elongation factor 2, lysyl-tRNA synthetase, phenylalanyl-tRNA synthetase, plasmepsin X, prodrug activation and resistance esterase, and V-type H+ ATPase of 998 fresh P. falciparum clinical isolates collected in eastern Uganda from 2015 to 2022. Drug susceptibilities were assessed by 72-h growth inhibition (half-maximum inhibitory concentration [IC50]) assays using SYBR green. Field isolates were highly susceptible to lead antimalarials, with low- to midnanomolar median IC50s, near values previously reported for laboratory strains, for all tested compounds. However, outliers with decreased susceptibilities were identified. Positive correlations between IC50 results were seen for compounds with shared targets. We sequenced genes encoding presumed targets to characterize sequence diversity, search for polymorphisms previously selected with in vitro drug pressure, and determine genotype-phenotype associations. We identified many polymorphisms in target genes, generally in <10% of isolates, but none were those previously selected in vitro with drug pressure, and none were associated with significantly decreased ex vivo drug susceptibility. Overall, Ugandan P. falciparum isolates were highly susceptible to 19 compounds under development as next-generation antimalarials, consistent with a lack of preexisting or novel resistance-conferring mutations in circulating Ugandan parasites. IMPORTANCE Drug resistance necessitates the development of new antimalarial drugs. It is important to assess the activities of compounds under development against parasites now causing disease in Africa, where most malaria cases occur, and to determine if mutations in these parasites may limit the efficacies of new agents. We found that African isolates were generally highly susceptible to the 19 studied lead antimalarials. Sequencing of the presumed drug targets identified multiple mutations in these genes, but these mutations were generally not associated with decreased antimalarial activity. These results offer confidence that the activities of the tested antimalarial compounds now under development will not be limited by preexisting resistance-mediating mutations in African malaria parasites.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum/genética , Uganda , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Malaria/parasitología , Resistencia a Medicamentos/genética , Ligasas , Proteínas Protozoarias/genética
4.
J Med Chem ; 66(2): 1484-1508, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36630286

RESUMEN

With increasing reports of resistance to artemisinins and artemisinin-combination therapies, targeting the Plasmodium proteasome is a promising strategy for antimalarial development. We recently reported a highly selective Plasmodium falciparum proteasome inhibitor with anti-malarial activity in the humanized mouse model. To balance the permeability of the series of macrocycles with other drug-like properties, we conducted further structure-activity relationship studies on a biphenyl ether-tethered macrocyclic scaffold. Extensive SAR studies around the P1, P3, and P5 groups and peptide backbone identified compound TDI-8414. TDI-8414 showed nanomolar antiparasitic activity, no toxicity to HepG2 cells, high selectivity against the Plasmodium proteasome over the human constitutive proteasome and immunoproteasome, improved solubility and PAMPA permeability, and enhanced metabolic stability in microsomes and plasma of both humans and mice.


Asunto(s)
Antimaláricos , Plasmodium , Humanos , Animales , Ratones , Antimaláricos/farmacología , Antimaláricos/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Relación Estructura-Actividad , Plasmodium falciparum/metabolismo , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química
5.
Nat Commun ; 13(1): 6353, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289202

RESUMEN

Artemisinin partial resistance may facilitate selection of Plasmodium falciparum resistant to combination therapy partner drugs. We evaluated 99 P. falciparum isolates collected in 2021 from northern Uganda, where resistance-associated PfK13 C469Y and A675V mutations have emerged, and eastern Uganda, where these mutations are uncommon. With the ex vivo ring survival assay, isolates with the 469Y mutation (median survival 7.3% for mutant, 2.5% mixed, and 1.4% wild type) and/or mutations in Pfcoronin or falcipain-2a, had significantly greater survival; all isolates with survival >5% had mutations in at least one of these proteins. With ex vivo growth inhibition assays, susceptibility to lumefantrine (median IC50 14.6 vs. 6.9 nM, p < 0.0001) and dihydroartemisinin (2.3 vs. 1.5 nM, p = 0.003) was decreased in northern vs. eastern Uganda; 14/49 northern vs. 0/38 eastern isolates had lumefantrine IC50 > 20 nM (p = 0.0002). Targeted sequencing of 819 isolates from 2015-21 identified multiple polymorphisms associated with altered drug susceptibility, notably PfK13 469Y with decreased susceptibility to lumefantrine (p = 6 × 10-8) and PfCRT mutations with chloroquine resistance (p = 1 × 10-20). Our results raise concern regarding activity of artemether-lumefantrine, the first-line antimalarial in Uganda.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Lumefantrina/farmacología , Lumefantrina/uso terapéutico , Combinación Arteméter y Lumefantrina/farmacología , Combinación Arteméter y Lumefantrina/uso terapéutico , Uganda , Malaria Falciparum/tratamiento farmacológico , Resistencia a Medicamentos/genética , Arteméter/farmacología , Arteméter/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Cloroquina/farmacología , Combinación de Medicamentos , Proteínas Protozoarias/metabolismo
6.
Antimicrob Agents Chemother ; 66(10): e0081722, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36094216

RESUMEN

The proteasome is a promising target for antimalarial chemotherapy. We assessed ex vivo susceptibilities of fresh Plasmodium falciparum isolates from eastern Uganda to seven proteasome inhibitors: two asparagine ethylenediamines, two macrocyclic peptides, and three peptide boronates; five had median IC50 values <100 nM. TDI8304, a macrocylic peptide lead compound with drug-like properties, had a median IC50 of 16 nM. Sequencing genes encoding the ß2 and ß5 catalytic proteasome subunits, the predicted targets of the inhibitors, and five additional proteasome subunits, identified two mutations in ß2 (I204T, S214F), three mutations in ß5 (V2I, A142S, D150E), and three mutations in other subunits. The ß2 S214F mutation was associated with decreased susceptibility to two peptide boronates, with IC50s of 181 nM and 2635 nM against mutant versus 62 nM and 477 nM against wild type parasites for MMV1579506 and MMV1794229, respectively, although significance could not be formally assessed due to the small number of mutant parasites with available data. The other ß2 and ß5 mutations and mutations in other subunits were not associated with susceptibility to tested compounds. Against culture-adapted Ugandan isolates, two asparagine ethylenediamines and the peptide proteasome inhibitors WLW-vinyl sulfone and WLL-vinyl sulfone (which were not studied ex vivo) demonstrated low nM activity, without decreased activity against ß2 S214F mutant parasites. Overall, proteasome inhibitors had potent activity against P. falciparum isolates circulating in Uganda, and genetic variation in proteasome targets was uncommon.


Asunto(s)
Antimaláricos , Plasmodium falciparum , Inhibidores de Proteasoma , Humanos , Antimaláricos/farmacología , Antimaláricos/química , Asparagina , Resistencia a Medicamentos/genética , Etilenodiaminas/farmacología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Péptidos/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Complejo de la Endopetidasa Proteasomal/genética , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/farmacología , Uganda
7.
Nat Commun ; 13(1): 2158, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35444200

RESUMEN

Drug resistance and a dire lack of transmission-blocking antimalarials hamper malaria elimination. Here, we present the pantothenamide MMV693183 as a first-in-class acetyl-CoA synthetase (AcAS) inhibitor to enter preclinical development. Our studies demonstrate attractive drug-like properties and in vivo efficacy in a humanized mouse model of Plasmodium falciparum infection. The compound shows single digit nanomolar in vitro activity against P. falciparum and P. vivax clinical isolates, and potently blocks P. falciparum transmission to Anopheles mosquitoes. Genetic and biochemical studies identify AcAS as the target of the MMV693183-derived antimetabolite, CoA-MMV693183. Pharmacokinetic-pharmacodynamic modelling predict that a single 30 mg oral dose is sufficient to cure a malaria infection in humans. Toxicology studies in rats indicate a > 30-fold safety margin in relation to the predicted human efficacious exposure. In conclusion, MMV693183 represents a promising candidate for further (pre)clinical development with a novel mode of action for treatment of malaria and blocking transmission.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Malaria Falciparum , Malaria Vivax , Malaria , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Malaria Vivax/tratamiento farmacológico , Ratones , Ácido Pantoténico/análogos & derivados , Plasmodium falciparum/genética , Ratas
8.
Antimicrob Agents Chemother ; 66(4): e0143721, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35266828

RESUMEN

We measured susceptibilities of Ugandan Plasmodium falciparum isolates assayed on the day of collection or after storage at 4°C. Samples were incubated with serial dilutions of 8 antimalarials, and susceptibilities were determined from 72-h growth inhibition assays. Storage was associated with decreased growth and lower 50% inhibitory concentration values, but differences between assays beginning on day 0 or after 1 or 2 days of storage were modest, indicating that short-term storage before drug susceptibility determination is feasible.


Asunto(s)
Antimaláricos , Malaria Falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Resistencia a Medicamentos , Humanos , Concentración 50 Inhibidora , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum , Uganda
9.
J Infect Dis ; 225(4): 696-704, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34460932

RESUMEN

BACKGROUND: The Plasmodium falciparum dihydrofolate reductase (PfDHFR) inhibitors pyrimethamine and cycloguanil (the active metabolite of proguanil) have important roles in malaria chemoprevention, but drug resistance challenges their efficacies. A new compound, P218, was designed to overcome resistance, but drug-susceptibility data for P falciparum field isolates are limited. METHODS: We studied ex vivo PfDHFR inhibitor susceptibilities of 559 isolates from Tororo and Busia districts, Uganda, from 2016 to 2020, sequenced 383 isolates, and assessed associations between genotypes and drug-susceptibility phenotypes. RESULTS: Median half-maximal inhibitory concentrations (IC50s) were 42 100 nM for pyrimethamine, 1200 nM for cycloguanil, 13000 nM for proguanil, and 0.6 nM for P218. Among sequenced isolates, 3 PfDHFR mutations, 51I (100%), 59R (93.7%), and 108N (100%), were very common, as previously seen in Uganda, and another mutation, 164L (12.8%), had moderate prevalence. Increasing numbers of mutations were associated with decreasing susceptibility to pyrimethamine, cycloguanil, and P218, but not proguanil, which does not act directly against PfDHFR. Differences in P218 susceptibilities were modest, with median IC50s of 1.4 nM for parasites with mixed genotype at position 164 and 5.7 nM for pure quadruple mutant (51I/59R/108N/164L) parasites. CONCLUSIONS: Resistance-mediating PfDHFR mutations were common in Ugandan isolates, but P218 retained excellent activity against mutant parasites.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Malaria Falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Resistencia a Medicamentos/genética , Antagonistas del Ácido Fólico/farmacología , Humanos , Malaria Falciparum/parasitología , Plasmodium falciparum , Polimorfismo Genético , Proguanil/farmacología , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Uganda
10.
Lancet Microbe ; 2(9): e441-e449, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34553183

RESUMEN

BACKGROUND: Treatment and control of malaria depends on artemisinin-based combination therapies (ACTs) and is challenged by drug resistance, but thus far resistance to artemisinins and partner drugs has primarily occurred in southeast Asia. The aim of this study was to characterise antimalarial drug susceptibility of Plasmodium falciparum isolates from Tororo and Busia districts in Uganda. METHODS: In this prospective longitudinal study, P falciparum isolates were collected from patients aged 6 months or older presenting at the Tororo District Hospital (Tororo district, a site with relatively low malaria incidence) or Masafu General Hospital (Busia district, a high-incidence site) in eastern Uganda with clinical symptoms of malaria, a positive Giemsa-stained blood film for P falciparum, and no signs of severe disease. Ex-vivo susceptibilities to ten antimalarial drugs were measured using a 72-h microplate growth inhibition assay with SYBR Green detection. Relevant P falciparum genetic polymorphisms were characterised by molecular methods. We compared results with those from earlier studies in this region and searched for associations between drug susceptibility and parasite genotypes. FINDINGS: From June 10, 2016, to July 29, 2019, 361 P falciparum isolates were collected in the Busia district and 79 in the Tororo district from 440 participants. Of 440 total isolates, 392 (89%) successfully grew in culture and showed excellent drug susceptibility for chloroquine (median half-maximal inhibitory concentration [IC50] 20·0 nM [IQR 12·0-26·0]), monodesethylamodiaquine (7·1 nM [4·3-8·9]), pyronaridine (1·1 nM [0·7-2·3]), piperaquine (5·6 nM [3·3-8·6]), ferroquine (1·8 nM [1·5-3·3]), AQ-13 (24·0 nM [17·0-32·0]), lumefantrine (5·1 nM [3·2-7·7]), mefloquine (9·5 nM [6·6-13·0]), dihydroartemisinin (1·5 nM [1·0-2·0]), and atovaquone (0·3 nM [0·2-0·4]). Compared with results from our study in 2010-13, significant improvements in susceptibility were seen for chloroquine (median IC50 288·0 nM [IQR 122·0-607·0]; p<0·0001), monodesethylamodiaquine (76·0 nM [44·0-137]; p<0·0001), and piperaquine (21·0 nM [7·6-43·0]; p<0·0001), a small but significant decrease in susceptibility was seen for lumefantrine (3·0 nM [1·1-7·6]; p<0·0001), and no change in susceptibility was seen with dihydroartemisinin (1·3 nM [0·8-2·5]; p=0·64). Chloroquine resistance (IC50>100 nM) was more common in isolates from the Tororo district (11 [15%] of 71), compared with those from the Busia district (12 [4%] of 320; p=0·0017). We showed significant increases between 2010-12 and 2016-19 in the prevalences of wild-type P falciparum multidrug resistance protein 1 (PfMDR1) Asn86Tyr from 60% (391 of 653) to 99% (418 of 422; p<0·0001), PfMDR1 Asp1246Tyr from 60% (390 of 650) to 90% (371 of 419; p<0·0001), and P falciparum chloroquine resistance transporter (PfCRT) Lys76Thr from 7% (44 of 675) to 87% (364 of 417; p<0·0001). INTERPRETATION: Our results show marked changes in P falciparum drug susceptibility phenotypes and genotypes in Uganda during the past decade. These results suggest that additional changes will be seen over time and continued surveillance of susceptibility to key ACT components is warranted. FUNDING: National Institutes of Health and Medicines for Malaria Venture.


Asunto(s)
Antimaláricos , Malaria Falciparum , Antimaláricos/farmacología , Cloroquina/farmacología , Genotipo , Humanos , Estudios Longitudinales , Lumefantrina/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Fenotipo , Plasmodium falciparum/genética , Estudios Prospectivos , Uganda/epidemiología
11.
Antimicrob Agents Chemother ; 65(10): e0077121, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34339273

RESUMEN

Among novel compounds under recent investigation as potential new antimalarial drugs are three independently developed inhibitors of the Plasmodium falciparum P-type ATPase (PfATP4): KAE609 (cipargamin), PA92, and SJ733. We assessed ex vivo susceptibilities to these compounds of 374 fresh P. falciparum isolates collected in Tororo and Busia districts, Uganda, from 2016 to 2019. Median IC50s were 65 nM for SJ733, 9.1 nM for PA92, and 0.5 nM for KAE609. Sequencing of pfatp4 for 218 of these isolates demonstrated many nonsynonymous single nucleotide polymorphisms; the most frequent mutations were G1128R (69% of isolates mixed or mutant), Q1081K/R (68%), G223S (25%), N1045K (16%), and D1116G/N/Y (16%). The G223S mutation was associated with decreased susceptibility to SJ733, PA92, and KAE609. The D1116G/N/Y mutations were associated with decreased susceptibility to SJ733, and the presence of mutations at both codons 223 and 1116 was associated with decreased susceptibility to PA92 and SJ733. In all of these cases, absolute differences in susceptibilities of wild-type (WT) and mutant parasites were modest. Analysis of clones separated from mixed field isolates consistently identified mutant clones as less susceptible than WT. Analysis of isolates from other sites demonstrated the presence of the G223S and D1116G/N/Y mutations across Uganda. Our results indicate that malaria parasites circulating in Uganda have a number of polymorphisms in PfATP4 and that modestly decreased susceptibility to PfATP4 inhibitors is associated with some mutations now present in Ugandan parasites.


Asunto(s)
Antimaláricos , Malaria Falciparum , Adenosina Trifosfatasas , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Resistencia a Medicamentos/genética , Genotipo , Humanos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/uso terapéutico , Uganda
12.
Malar J ; 20(1): 292, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193148

RESUMEN

BACKGROUND: Anti-malarial drug resistance may be limited by decreased fitness in resistant parasites. Important contributors to resistance are mutations in the Plasmodium falciparum putative drug transporter PfMDR1. METHODS: Impacts on in vitro fitness of two common PfMDR1 polymorphisms, N86Y, which is associated with sensitivity to multiple drugs, and Y184F, which has no clear impact on drug sensitivity, were evaluated to study associations between resistance mediators and parasite fitness, measured as relative growth in competitive culture experiments. NF10 P. falciparum lines engineered to represent all PfMDR1 N86Y and Y184F haplotypes were co-cultured for 40 days, and the genetic make-up of the cultures was characterized every 4 days by pyrosequencing. The impacts of culture with anti-malarials on the growth of different haplotypes were also assessed. Lastly, the engineering of P. falciparum containing another common polymorphism, PfMDR1 D1246Y, was attempted. RESULTS: Co-culture results were as follows. With wild type (WT) Y184 fixed (N86/Y184 vs. 86Y/Y184), parasites WT and mutant at 86 were at equilibrium. With mutant 184 F fixed (N86/184F vs. 86Y/184F), mutants at 86 overgrew WT. With WT N86 fixed (N86/Y184 vs. N86/184F), WT at 184 overgrew mutants. With mutant 86Y fixed (86Y/Y184 vs. 86Y/184F), WT and mutant at 86 were at equilibrium. Parasites with the double WT were in equilibrium with the double mutant, but 86Y/Y184 overgrew N86/184F. Overall, WT N86/mutant 184F parasites were less fit than parasites with all other haplotypes. Parasites engineered for another mutation, PfMDR1 1246Y, were unstable in culture, with reversion to WT over time. Thus, the N86 WT is stable when accompanied by the Y184 WT, but incurs a fitness cost when accompanied by mutant 184F. Culturing in the presence of chloroquine favored 86Y mutant parasites and in the presence of lumefantrine favored N86 WT parasites; piperaquine had minimal impact. CONCLUSIONS: These results are consistent with those for Ugandan field isolates, suggest reasons for varied haplotypes, and highlight the interplay between drug pressure and fitness that is guiding the evolution of resistance-mediating haplotypes in P. falciparum.


Asunto(s)
Antimaláricos/farmacología , Aptitud Genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Mutación , Plasmodium falciparum/genética , Cloroquina/farmacología , Haplotipos , Lumefantrina/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Plasmodium falciparum/efectos de los fármacos , Quinolinas/farmacología
13.
J Med Chem ; 64(9): 6085-6136, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33876936

RESUMEN

Dihydroorotate dehydrogenase (DHODH) has been clinically validated as a target for the development of new antimalarials. Experience with clinical candidate triazolopyrimidine DSM265 (1) suggested that DHODH inhibitors have great potential for use in prophylaxis, which represents an unmet need in the malaria drug discovery portfolio for endemic countries, particularly in areas of high transmission in Africa. We describe a structure-based computationally driven lead optimization program of a pyrrole-based series of DHODH inhibitors, leading to the discovery of two candidates for potential advancement to preclinical development. These compounds have improved physicochemical properties over prior series frontrunners and they show no time-dependent CYP inhibition, characteristic of earlier compounds. Frontrunners have potent antimalarial activity in vitro against blood and liver schizont stages and show good efficacy in Plasmodium falciparum SCID mouse models. They are equally active against P. falciparum and Plasmodium vivax field isolates and are selective for Plasmodium DHODHs versus mammalian enzymes.


Asunto(s)
Antimaláricos/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Pirroles/farmacología , Animales , Antimaláricos/química , Dihidroorotato Deshidrogenasa , Inhibidores Enzimáticos/química , Ratones , Plasmodium falciparum/efectos de los fármacos , Pirroles/química , Relación Estructura-Actividad
14.
Angew Chem Int Ed Engl ; 60(17): 9279-9283, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33433953

RESUMEN

Plasmodium falciparum proteasome (Pf20S) inhibitors are active against Plasmodium at multiple stages-erythrocytic, gametocyte, liver, and gamete activation stages-indicating that selective Pf20S inhibitors possess the potential to be therapeutic, prophylactic, and transmission-blocking antimalarials. Starting from a reported compound, we developed a noncovalent, macrocyclic peptide inhibitor of the malarial proteasome with high species selectivity and improved pharmacokinetic properties. The compound demonstrates specific, time-dependent inhibition of the ß5 subunit of the Pf20S, kills artemisinin-sensitive and artemisinin-resistant P. falciparum isolates in vitro and reduces parasitemia in humanized, P. falciparum-infected mice.


Asunto(s)
Antimaláricos/farmacología , Desarrollo de Medicamentos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Animales , Antimaláricos/síntesis química , Antimaláricos/química , Malaria Falciparum/metabolismo , Ratones , Modelos Moleculares , Conformación Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/enzimología , Inhibidores de Proteasoma/síntesis química , Inhibidores de Proteasoma/química
15.
ACS Infect Dis ; 6(11): 2994-3003, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32970404

RESUMEN

Unique lindenane sesquiterpenoid dimers from Chloranthecae spp. were recently identified with promising in vitro antiplasmodial activity and potentially novel mechanisms of action. To gain mechanistic insights to this new class of natural products, in vitro selection of Plasmodium falciparum resistance to the most active antiplasmodial compound, chlorajaponilide C, was explored. In all selected resistant clones, the half-maximal effective concentration (EC50) of chlorajaponilide C increased >250-fold, and whole genome sequencing revealed mutations in the recently discovered P. falciparum prodrug activation and resistance esterase (PfPARE). Chlorajaponilide C was highly potent (mean EC50 = 1.6 nM, n = 34) against fresh Ugandan P. falciparum isolates. The analysis of the structure-resistance relationships revealed that in vitro potency of a subset of lindenane sesquiterpenoid dimers was not mediated by PfPARE mutations. Thus, chlorajaponilide C, but not some related compounds, required parasite esterase activity for in vitro potency, and those compounds serve as the foundation for development of potent and selective antimalarials.


Asunto(s)
Antimaláricos , Sesquiterpenos , Antimaláricos/farmacología , Esterasas/genética , Ésteres , Mutación , Plasmodium falciparum/genética , Sesquiterpenos/farmacología
16.
J Med Chem ; 63(11): 6179-6202, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32390431

RESUMEN

The global impact of malaria remains staggering despite extensive efforts to eradicate the disease. With increasing drug resistance and the absence of a clinically available vaccine, there is an urgent need for novel, affordable, and safe drugs for prevention and treatment of malaria. Previously, we described a novel antimalarial acridone chemotype that is potent against both blood-stage and liver-stage malaria parasites. Here, we describe an optimization process that has produced a second-generation acridone series with significant improvements in efficacy, metabolic stability, pharmacokinetics, and safety profiles. These findings highlight the therapeutic potential of dual-stage targeting acridones as novel drug candidates for further preclinical development.


Asunto(s)
Acridonas/química , Antimaláricos/química , Acridonas/farmacocinética , Acridonas/farmacología , Acridonas/uso terapéutico , Administración Oral , Animales , Antimaláricos/farmacocinética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Semivida , Células Hep G2 , Humanos , Estadios del Ciclo de Vida/efectos de los fármacos , Malaria/tratamiento farmacológico , Malaria/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/aislamiento & purificación , Relación Estructura-Actividad
17.
Nat Commun ; 11(1): 2107, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32355199

RESUMEN

The Democratic Republic of the Congo (DRC) harbors 11% of global malaria cases, yet little is known about the spatial and genetic structure of the parasite population in that country. We sequence 2537 Plasmodium falciparum infections, including a nationally representative population sample from DRC and samples from surrounding countries, using molecular inversion probes - a high-throughput genotyping tool. We identify an east-west divide in haplotypes known to confer resistance to chloroquine and sulfadoxine-pyrimethamine. Furthermore, we identify highly related parasites over large geographic distances, indicative of gene flow and migration. Our results are consistent with a background of isolation by distance combined with the effects of selection for antimalarial drug resistance. This study provides a high-resolution view of parasite genetic structure across a large country in Africa and provides a baseline to study how implementation programs may impact parasite populations.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Cloroquina/farmacología , República Democrática del Congo , Combinación de Medicamentos , Genoma de Protozoos , Genotipo , Geografía , Haplotipos , Humanos , Malaria Falciparum/parasitología , Malaria Falciparum/prevención & control , Mutación , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Pirimetamina/farmacología , Sulfadoxina/farmacología
18.
J Med Chem ; 62(13): 6137-6145, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31177777

RESUMEN

The Plasmodium proteasome (Pf20S) emerged as a target for antimalarials. Pf20S inhibitors are active at multiple stages of the parasite life cycle and synergize with artemisinins, suggesting that Pf20S inhibitors have potential to be prophylactic, therapeutic, and transmission blocking as well as are useful for combination therapy. We recently reported asparagine ethylenediamines (AsnEDAs) as immunoproteasome inhibitors and modified AsnEDAs as selective Pf20S inhibitors. Here, we report further a structure-activity relationship study of AsnEDAs for selective inhibition of Pf20S over human proteasomes. Additionally, we show new mutation that conferred resistance to AsnEDAs and collateral sensitivity to an inhibitor of the Pf20S ß2 subunit, the same as previously identified resistant mutation. This resistance could be overcome through the use of the structure-guided inhibitor design. Collateral sensitivity to inhibitors among respective proteasome subunits underscores the potential value of treating malaria with combinations of inhibitors of different proteasome subunits to minimize the emergence of drug resistance.


Asunto(s)
Antimaláricos/farmacología , Malaria Falciparum/prevención & control , Plasmodium falciparum/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Antimaláricos/química , Antimaláricos/metabolismo , Asparagina/química , Asparagina/metabolismo , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Etilenodiaminas/química , Etilenodiaminas/metabolismo , Humanos , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Mutación , Plasmodium falciparum/genética , Plasmodium falciparum/fisiología , Complejo de la Endopetidasa Proteasomal/genética
19.
Proc Natl Acad Sci U S A ; 115(29): E6863-E6870, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29967165

RESUMEN

We describe noncovalent, reversible asparagine ethylenediamine (AsnEDA) inhibitors of the Plasmodium falciparum proteasome (Pf20S) ß5 subunit that spare all active subunits of human constitutive and immuno-proteasomes. The compounds are active against erythrocytic, sexual, and liver-stage parasites, against parasites resistant to current antimalarials, and against P. falciparum strains from patients in Africa. The ß5 inhibitors synergize with a ß2 inhibitor in vitro and in mice and with artemisinin. P. falciparum selected for resistance to an AsnEDA ß5 inhibitor surprisingly harbored a point mutation in the noncatalytic ß6 subunit. The ß6 mutant was resistant to the species-selective Pf20S ß5 inhibitor but remained sensitive to the species-nonselective ß5 inhibitors bortezomib and carfilzomib. Moreover, resistance to the Pf20S ß5 inhibitor was accompanied by increased sensitivity to a Pf20S ß2 inhibitor. Finally, the ß5 inhibitor-resistant mutant had a fitness cost that was exacerbated by irradiation. Thus, used in combination, multistage-active inhibitors of the Pf20S ß5 and ß2 subunits afford synergistic antimalarial activity with a potential to delay the emergence of resistance to artemisinins and each other.


Asunto(s)
Antimaláricos/química , Plasmodium falciparum/enzimología , Complejo de la Endopetidasa Proteasomal/química , Inhibidores de Proteasoma/química , Proteínas Protozoarias/antagonistas & inhibidores , Artemisininas/química , Bortezomib/química , Farmacorresistencia Microbiana , Humanos , Lactonas/química , Oligopéptidos/química , Proteínas Protozoarias/química
20.
Artículo en Inglés | MEDLINE | ID: mdl-28923866

RESUMEN

Dihydroartemisinin-piperaquine (DP) has demonstrated excellent efficacy for the treatment and prevention of malaria in Uganda. However, resistance to both components of this regimen has emerged in Southeast Asia. The efficacy of artemether-lumefantrine, the first-line regimen to treat malaria in Uganda, has also been excellent, but continued pressure may select for parasites with decreased sensitivity to lumefantrine. To gain insight into current drug sensitivity patterns, ex vivo sensitivities were assessed and genotypes previously associated with altered drug sensitivity were characterized for 58 isolates collected in Tororo, Uganda, from subjects presenting in 2016 with malaria from the community or as part of a clinical trial comparing DP chemoprevention regimens. Compared to community isolates, those from trial subjects had lower sensitivities to the aminoquinolines chloroquine, monodesethyl amodiaquine, and piperaquine and greater sensitivities to lumefantrine and mefloquine, an observation consistent with DP selection pressure. Compared to results for isolates from 2010 to 2013, the sensitivities of 2016 community isolates to chloroquine, amodiaquine, and piperaquine improved (geometric mean 50% inhibitory concentrations [IC50] = 248, 76.9, and 19.1 nM in 2010 to 2013 and 33.4, 14.9, and 7.5 nM in 2016, respectively [P < 0.001 for all comparisons]), the sensitivity to lumefantrine decreased (IC50 = 3.0 nM in 2010 to 2013 and 5.4 nM in 2016 [P < 0.001]), and the sensitivity to dihydroartemisinin was unchanged (IC50 = 1.4 nM). These changes were accompanied by decreased prevalence of transporter mutations associated with aminoquinoline resistance and low prevalence of polymorphisms recently associated with resistance to artemisinins or piperaquine. Antimalarial drug sensitivities are changing in Uganda, but novel genotypes associated with DP treatment failure in Asia are not prevalent.


Asunto(s)
Antimaláricos/uso terapéutico , Resistencia a Medicamentos/genética , Malaria Falciparum/tratamiento farmacológico , Proteínas de Transporte de Membrana/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/genética , Adolescente , Amodiaquina/análogos & derivados , Amodiaquina/uso terapéutico , Artemisininas/uso terapéutico , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Niño , Preescolar , Cloroquina/uso terapéutico , Etanolaminas/uso terapéutico , Femenino , Fluorenos/uso terapéutico , Expresión Génica , Humanos , Lactante , Concentración 50 Inhibidora , Lumefantrina , Malaria Falciparum/parasitología , Masculino , Mefloquina/uso terapéutico , Proteínas de Transporte de Membrana/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Mutación , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Quinolinas/uso terapéutico , Uganda , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...